
SlapOS: a Multi-purpose Distributed Cloud Operating System
Based on an ERP Billing Model

Jean-Paul Smets-Solanes∗, Christophe Cérin† and Romain Courteaud∗

∗ Nexedi SA,
270 boulevard Clémenceau,

59700 Marcq-en-Baroeul, France.
Email: jp@nexedi.com

†Université de Paris 13, PRES Sorbonne Paris Cité
LIPN UMR CNRS 7030,

99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
Email: christophe.cerin@lipn.univ-paris13.fr

Abstract—SlapOS is an open source grid operating system for
distributed cloud computing based on the moto everything is
a process. SlapOS combines grid computing and Enterprise
Resource Modeling (ERP) to provide Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) through a simple, unified API which
one can learn in a matter of minutes. Thanks to its unified
approach and modular architecture, SlapOS has been used as a
research testbed to benchmark NoSQL databases and optimize
process allocation over intercontinental Cloud. SlapOS opens
new perspectives for research in the area of resilience and
security on the Cloud.

Keywords-Service Architecture, Enterprise Level Transforma-
tion, Business Process Management and Integration, Business
Grid and Cloud Computing.

I. INTRODUCTION

Cloud Computing is traditionally divided in three market
segments: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). Cloud
Computing standardization groups, government funded re-
search projects and corporate marketing presentations often
introduce Cloud Computing through a 3-layer approach.
IaaS provides virtual machines and storage. PaaS is built
on top of IaaS and provides core services such application
servers and databases. SaaS is built on top of PaaS and
provides end-user applications such as Content Management
System (CMS) or Customer Relation Management (CRM)
software. The traditional layered approach implicitly sup-
poses that the IaaS layer of Public Clouds is implemented
by very large server farms, which are supposed to provide
optimal efficiency through economies of scale and automa-
tion. The IaaS layer of Private Clouds is implicitly supported
by expensive Storage Area Networks (SAN) hardware.
There are several efforts already under way, including the
Distributed Management Task Force (DMTF) Open Cloud
Standards Incubator, the Open Grid Forum’s Open Cloud

Computing Interface working group, and the Storage Net-
work Industry Association Cloud Storage Technical Work
Group. In France the Free Cloud Alliance promotes the first
Open Source Cloud Computing Stack which covers both
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) with a consistent set
of technologies targetted at high performance and mission
critical applications. A great resource to see the spectrum of
cloud standards activity can be found at the OMG’s cloud-
standards.org wiki.
With the increasing adoption of IPv6, 1 Gbps fiber to the
home, multi-core CPUs and Solid State Disks, the traditional
view on Public Cloud based on very large server farms, or
the traditional view on Private Cloud based on corporate
Storage Area Networks, is no longer as relevant as it used
to be. A new form of Cloud massively distributed cloud
can be implemented nowadays to provide Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) with new levels of cost efficiency, dras-
tically reduced environmental impact and higher protection
of citizen Freedom. It is now possible to implement Cloud
Computing through a myriad of servers located in everyone’s
home or in every worker’s desk. Internet transit marginal
cost becomes zero, distributed storage software is used
instead of SAN. Energy is saved by eliminating the need
for air cooling and by reusing natural server dissipation for
house or office heating. Citizen Freedom is better protected
by preventing data to be centralized under control of single
entity, as it is now required for example by Law in India
[XX]. Massively distributed cloud is already acknowledged
and supported by the OW2 Consortium1, by the Free Cloud
Alliance2 and by the Free Software Foundation3.

1http://www.ow2.org
2http://www.freecloudalliance.org/
3http://www.fsf.org/

We will introduce in this article SlapOS, the first open source
operating system for Distributed Cloud Computing. SlapOS
is based on a grid computing daemon called slapgrid
which is capable of installing any software on a PC and
instantiate any number of processes of potentially infinite
duration of any installed software. Slapgrid daemon receives
requests from a central scheduler the SlapOS Master which
collects back accounting information from each process.
SlapOS Master follows an Enterprise Resource Planning
(ERP) model to handle at the same time process allocation
optimization and billing.
According to the classification in [2] , the paper is related to
Service Architecture (how to design and build an ’operating
system’ for the grid), Enterprise Level Transformation (what
we consider as best practices for transforming the main
activity of the company), Business Process Management
and Integration (how to organize and develop your business
according to the use of Open Source Software), Business
Grid and Cloud Computing (how to enhance your business
with Cloud Technology).
The organization of the paper is as follows. Section II is an
overview of the SplapOS project. Section III provides with
details about the SlapOS implementation. Section IV-B is
a full description of the developper and accounting models.
Section V is related to an example about SlapOS use case.
Section VI is about research questions about the design and
the future of SlapOS. Section VII concludes the paper.

II. A GRID APPROACH TO CLOUD COMPUTING

SlapOS is an open source Cloud Operating system which
was inspired by recent research in Grid Computing and
in particular by BonjourGrid [3]–[5] a meta Desktop Grid
middleware for the coordination of multiple instances of
Desktop Grid middleware. It is based on the moto that
”everything is a process”. SlapOS is now an OW2 project.
Figure 1 shows the current architecture.
SlapOS defines two types of servers: SlapOS Nodes and
SlapOS Master. SlapOS Nodes can be installed inside data
centers or at home. Their role is to install software and run
processes. SlapOS Master acts as a central directory of all
SlapOS Nodes, knowing where each SlapOS Node is located
and which software can be installed on each node. The role
of SlapOS Master is to allocate processes to SlapOS Nodes.

A. SlapOS Architecture

SlapOS Nodes and SlapOS Master exchange are intercon-
nected through the HTTP and XML based SLAP protocol.
SlapOS Master sends to each SlapOS Node a description
of which software should be installed and executed. Each
SlapOS Node sends to SlapOS Master a description of how
much resources were used during a given period of time for
accounting and billing purpose.
From a user point of view, SlapOS Node looks like an online
shop for Cloud Computing resources. The user connects to

Figure 1. The SlapOS Architecture

SlapOS Master through a simplified front end, selects which
software he or she needs. SlapOS Master then allocates the
software onto a SlapOS Node and provides the connection
information to the user. The allocated software can be of any
type: virtual machine, database server, application server,
web cache front end, etc.

Figure 2. An example of SlapOS front-end

B. An example of SlapOS front-end

From a developer point of view, see Figure 2, SlapOS is a
simple and universal API to create instances of any software
daemon through a programmatic interface. The sample code
bellow shows how a developer can request a new instances
of a memcache server by invoking the request method of
SlapOS API. Memcache [19] is a widely adopted key-value
store protocol which is used to cache values in large scale
web infrastructure. It is usually installed and configured by
system administrators using packaging systems such RPM
or DEB. In this example, a single method call does in a
few seconds what a human system adminstrator would have
done in few minutes at best.

A sample source code to request a process is shown on
Figure 3.

Figure 3. Example of source code

III. CURRENT IMPLEMENTATION OF SLAPOS
SlapOS is implemented as an extension of widely adopted
open source software: GNU/Linux, Buildout [20] and Su-
pervisord [21] and as depicted on Figure 4. The only new
software introduced by SlapOS is Slapgrid, a daemon in
charge of implementing the SLAP protocol on each SlapOS
Node.

A. SlapOS Kernel

Each time slapgrid receives a request from SlapOS master to
install a software, it downloads a description of that software
in the form of so-called buildout profile. It then runs the
buildout boostrap process to install the software. Buildout
is a Python-based build system for creating, assembling
and deploying applications from multiple parts, some of
which may be non-Python-based. Buildout can be used
to build C, C++, ruby, java, perl, etc. software on Linux,
MacOS, Windows, etc. Buildout can either build applications
by downloading their source code from source repositories
(subversion, git, mercurial, etc.) or by downloading binaries
from package repositories (rpm, deb, eggs, gems, war, etc.).
Buildout excels in particular at building applications in a
way which is operating system agnostic and to automate
application configuration process in a reproduceable way.

Figure 4. SlapOS kernel

Each time slapgrid receives a request from SlapOS master
to run a software as a new process, it calls first buildout to
create all configuration files for that process then delegates
to supervisord the execution of the process. Supervisor
is a client/server system that allows its users to monitor

and control a number of processes on UNIX-like operating
systems. It provides a higher abstraction and flexibility than
traditional sysinit.
After some time, a typical SlapOS Node will include multi-
ple software applications (see Figure 5) and, for each soft-
ware application, multiple instances, each of which running
in a different process. For example, both Mediawiki and OS
Commerce could be installed onto the same SlapOS Node,
with six instances of each being run as processes. By running
software instances as processes, rather than by creating a
virtual machine for each software instance as one would do
with Amazon EC2, SlapOS is able to use hardware resources
and RAM in particular more efficiently.

Figure 5. SlapOS implementation

B. Details about the implementation

SlapOS Master (see Figure 6) runs ERP5 Cloud Engine,
a version of ERP5 open source ERP capable of allocating
processes in relation with accounting and billing rules. Initial
versions of SlapOS Master were installed and configured by
human. Newer versions of SlapOS Master are implemented
themselves as SlapOS Nodes, in a completely reflexive ways.
A SlapOS Master can thus allocate a SlapOS Master which
in turn can allocate another SlapOS Master, etc.

Figure 6. SlapOS Master

IV. SLAPOS MODEL

A. Developper model

For the end user or the developer, SlapOS API is based
on a single core API method: request. This method is used
to extend the buildout framework. It adds to buildout the
possibility to remotely deploy and configure buildout based
software. Additional SlapOS API methods include initialize-
Connection and registerComputerPartition. They are used to
register to SlapOS master and are normally hidden to the
developper of buildout profiles.
What is important to notice at this point is that SlapOS,
through the software release url parameter, can build, install
and instanciate about any type of software as long as the
software is described through a buildout profile which can
be stored almost anywhere on the Web and referred to
through a URL. There are already more than a thousand
a buildout profiles for many different types of software
including storage and virtual machines (IaaS), application
server (PaaS) and business applications (SaaS). Another
important aspect of the request method is that it defines a
paremeter called instance type which can be used to specify
which service of a given software should be instanciated and
started. This is useful for encapsulating all services provides
by a software into a single buildout software descriptor,
rather than developing multiple ones and thus preventing
mutualisation of shared libraries. A Qemu buildout profile
for example provides both Kvm based virtual machines
under the instance type kvm and nbd based block server
under the instance type nbd. Both services are actually
available as part of the same qemu binary, although they
are mostly independent and can be allocated separately.
Similarly, instances types are useful for application servers
and distribute storage to differentiate master nodes vs. slave
nodes in a non symetrical cluster.
The extra parameters of the request method can be used to
define Service Level Agreement (SLA) information and soft-
ware configuration. SLA parameters can be used to specify
that the software instance should be allocated on the same
host, the same LAN, the same country, the same continent
or on a different host, different LAN, different country
or different continent. By allocating software instances on
different LANs and different continents, resilience of a
Cloud hosted environment can be increased. By allocating
software instances on the same LAN or host, performance
of distributed storage can be optimized.
Extra parameters can also be used to specify the config-
uration of the software instance. The number of backend
nodes of a Web application is typically specified in this
way. Elasticity is provided in SlapOS by changing the value
which defines the number of backends. Automatic elasticity
is provided by combining performance monitoring and calls
to the request method with a number of nodes which depends
on the current status of performance monitoring, following

a control system pattern.

B. Accounting model

The accounting model of SlapOS is an application of ERP5
Unified Business Model4 (UBM) [12]. ERP5 defines 5
concepts which match with any business problem: Resource,
Movement, Item, Node and Path. The ERP5 model is
based on the idea that everything in business is a matter
of flow, stock, traceability and planning of future flows.
Until now, this model has been applied successfully to
banking, accounting, manufacturing, trading, HR, document
management, open data management, patient records. The
use of ERP5 model in SlapOS comes from the fact that
allocating and billing processes in computers is not very
different from allocating containers in ships. In both cases,
once it has been allocated, it is difficult to move it to another
computer (vs. another ship).
In the case of SlapOS, Nodes are the people and organi-
sations who register to the SlapOS portal. Once they are
registered, they can request any type of resource. They can
also add to a SlapOS global Cloud their own servers in order
to contribute to total amount of processing resources, just
like SETI@Home did. SlapOS Resources - in the sense of
ERP5 UBM - are the Software Products such as MySQL,
KVM, Xwiki, Nuxeo, ERP5, Sheepdog which people and
organisations can subscribe to and for which they will
be later invoiced. It is important to notice that Software
Products do not have a version of release number. It is just
a marketing or commercial name for a service.
Movements in the sense of UBM represent the billing
information such as the amount of GHz, the amount of
storage, the number of users which have been used over
a period of time by each process in the SlapOS cloud. Then
comes the core part of SlapOS: traceability. In order to know
which version of which software is being run on which
computer and IP address for who and with which parameters,
SlapOS defines 5 types of UBM Item: Computer, Computer
Partition, Software Release, Software Instance, Subscription
Item.
A Computer Item is created each time a server is added to
the SlapOS cloud. Each Computer Item is divided into a
given number of so-called Computer Partition. The number
of independent services (Software Products) which can be
instanciated on a given Computer is at most equal to the
number Computer Partitions of the Computer. Computer
Partitions are usually implemented as subdirectories of the
Computer. On an IPv6 network, each Computer Partition
can be associated to a different IPv6 address. On an IPv4
network, each Computer Partition can be associated to a
different port range for the same IPv4 address. Some Com-
puter Partitions can also associated to a tap virtual ethernet
interface which is then bridged and used by virtual machines.

4http://www.erp5.org/UnifiedBusinessModel

Some Computer Partitions are associated to a physical disk
partition, which can be used by virtual machines for higher
access performance through Virtio5. The partitioning process
in SlapOS is handled by optional utilities provided by
SlapOS. There is no obligation to use such utilities. Any
naming of directories, allocation of IP addresses or port
range, disk partitions or network interfaces is acceptable as
long as it can be described in SlapOS standard XML file
which the slapgrid daemon uploads to SlapOS master.
A Software Release Item defines precisely how to build a
Software and install it on a Computer. Currently, SlapOS
uses buildout profiles to define a Software Release. Multiple
Software Release can exist for the same Software Product.
For example, the MySQL Software Product exists in Release
5.0, Release 5.1, Release 5.0 patched with Senna Full Text,
etc. A major strength of SlapOS is its ability to provide
complete freedom to extend the number of Software Release
and Software Products. The Software Release Item is the
equivalent in SlapOS master of the software release url of
the request method.
A Software Instance Item contains all parameters to config-
ure an instance of Software Release. It also defines the type
of service to run from Software Release. It is the equivalent
in SlapOS master of the instance type, instance id and kw
parameters of the request method.
The Subscription Item is used to group all accounting
information for a given consistent set of Software Instances.
It is also used to generate daily, weekly, monthly or yearly
subscription billing. It plays a key role for the production of
invoices. SlapOS movements which are either collected from
each SlapOS node or generated by Subscription Item are col-
lected on a monthly base, grouped by Subscription Item and
by Customer, so that each customer can receive an invoice
and understand for which service (Software Product), which
release (Software Release) and configuration (Software In-
stance), on which computer (Computer Partition) and for
what amount of which resource (Movement) he or she was
invoiced.
The information needed to produce a detailed invoice is
actually the same as the information needed to provision
services on the Cloud. This is another reason why in
SlapOS, accounting and provisionning are handled by the
same software component, both to reduce duplication of
information, increase consistency and make the system more
simple.

C. Future evolutions of SlapOS models

SlapOS uses buildout and a single URL to describe how to
build and install software. This approach could be extended
in different ways. Ideally, it should be possible to install
software using other build systems or even by using pack-
ages (DEB, RPM). This is not incompatible with SlapOS

5http://lwn.net/Articles/239238/

approach as long as the software which is installed provides
itself a way to create multiple software instances through
buildout or through any other type of templating system. It
should also be possible to specify multiple URLs, embedded
for example in a single file containing a list of URLs. This
would be useful to specify different releases of the same
software which are all considered as acceptable (ex. MySQL
5.0, MySQL 5.1, etc.).
Another evolution could be the encapsulation of best Cloud
practices into either buildout recipes (for modularity) or
SlapOS API (for simplicity). For example, self-controlled
elasticity based on performance monitoring and feedback
could be encapsulated into a class and reused by different
Software Product. SlapOS will first consider the approach of
buildout recipes which provides maximum flexibility before
considering extending the current simple API.

V. EXAMPLES OF APPLICATION

SlapOS is multi-purpose. It is used for public cloud and
private cloud. It is used for IaaS, PaaS and SaaS. Although
SlapOS is universal, it is also extremely simple. SlapOS API
consists mostly of a single method: request.
SlapOS is used by VIFIB, a French Internet Service
Provider, to provide virtual machines through IPv6. VIFIB
infrastructures consists of Asus barebone PCs with Intel
i7 860 CPUs, 80 GB Solid Stade Disks and 8 GB RAM.
Thanks to the use of SSD, running 8 virtual machines on
a single PC which costs only 700 EUR is possible. VIFIB
virtual machines are used mostly by developers who find
them faster than their own laptop. SlapOS is used by Beteire-
flow, one of Ireland’s largest CRM operation. SlapOS is
used to instanciate a complex ERP5 solution which includes
non transactional NoSQL (kumofs), distributed transactional
NoSQL (NEO), load balancing (ha-proxy), a cluster of
application servers (Zope), a set of front-ends (Apache,
Varnish) and automatic backup daemons (repozo). Thanks
to SlapOS, this complex system can be reinstalled and
configured in a matter of seconds on a new infrastructure.
SlapOS plays a key role here as part of a Disaster Recovery
Plan.
SlapOS is used by Nexedi to run ERP5 test suite. ERP5
test suite consists of more than 5000 tests including unit
tests, functional tests and scalability tests. By distributing
test tasks to SlapOS, ERP5 test suite can be executed in
a few minutes instead of a few hours. This productivity
improvement plays nowadays a key role in the acceleration
of ERP5 release process.
SlapOS is also a key component in the COMPATIBLE
ONE project, French government sponsored project for open
source Cloud. SlapOS acts as a unified billing platform for
all types of IaaS, SaaS and PaaS thanks to the TioXML
resource accounting standard.
SlapOS should also soon serve as a platform for open source
software publisher to turn their software into multi-tenant

SaaS. SlapOS has received a lot of attention from IT industry
and telecommunication industry because it is capable of
hosting as many as 200 ERP instances at a cost of less than
1 USD per month and per instance. It is also acknowledged
that SlapOS can save huge investments in research and
development for those companies which need to turn their
existing software into SaaS.

VI. RESEARCH QUESTIONS AND DESIGN

A. Technology driven projects

SlapOS raises wide variety of research topics: process allo-
cation optimization, energy management, software distribu-
tion, resilient storage, high availability, security.
In SlapOS, infinite duration processes are allocated, rather
than limited duration computing tasks in traditional grid
computing [10], [11]. Once a process is allocated on a
SlapOS server node, it can not be moved to another SlapOS
server node. Process allocation should at the same time
optimize hardware resource usage and guarantee acceptable
service level. Allocating too few processes per server node
is a waste of resource usage. Allocating too many processes
per server may lead to poor service for customers and users.
Early research on this topics is being conducted as part
of TioSafe project [22] by Institut Télécom, based on the
metaphor of bin packing.
Energy is becoming a key cost factors of Cloud Comput-
ing and a growing source of environmental impact. With
SlapOS, heat dissipation during winter time is reused for
household or office heating. During summer time, heat
dissipation is either evacuated through natural air circulation
or requires to spend additional energy for air cooling. In
northern countries or mountain side, SlapOS leads to energy
savings of more than 50% compared to a server farm. In
southern countries, the energy balance is unclear. Improving
the energy efficiency of SlapOS, either in combination with
smart grids6 or by implement optimal process allocation is
another field of research.
SlapOS does not use traditional software packaging found
for example in GNU/Linux distributions and which has been
extensively modeled and studied, in particular by Roberto di
Cosmo [8], [9]. Instead it combines source code access with
heterogeneous packaging which are now specific to each
programming language: python eggs [23], ruby gems [24],
Java. Thanks to buildout technology, a single SlapOS server
node can run any number of versions of a given software or
library at the same time, thus providing the level of flexibility
required for SaaS and PaaS. This new approach opens new
fields of research in post-packaging software distribution.
SlapOS Nodes are not meant to be perfectly reliable. Instead,
it is the role of the application to implement its own redun-
dancy policy. This includes in particular redundant storage.
Applications based on NoSQL database can leverage the

6See http://http://en.wikipedia.org/wiki/Smart grid

native redundancy of most NoSQL software. Applications
based on relational databases need to find relevant tactics to
implement data redundancy. Some tactics are quite simple:
for example, by connecting to two databases and maintaing
an asynchronous copy of data from one database to the other.
Other tactics are more complex and can involved clustered
databases. Analysing the different tactics for data redun-
dancy is an interesting field of education, if not research.
Many students are not yet aware how to implement dis-
tributed data storage. SlapOS is a perfect test bed to educate
students to the different approachs which are implemented
in the industry.
High availability is another research topic with SlapOS.
The introduction of mobile IPv6 could be consider to
implement a kind of process migration, as it already exists
in XtreemOS [25]. Other approaches, based on dynamic
DNS and monitoring could be integrated at the core of
SlapOS. Mapping processes to internet names is generally a
interesting direction for the future of SlapOS in the context
of high availability requirements.
Security is probably the most important research with Sla-
pOS. Because it is based on IPv6 and on a flat view of
Internet, SlapOS can not rely on firewalls or masquerading
for security. Moroever, granting rights to install software on
a SlapOS Node requires more flexibility than what SlapOS
currently provides. The introduction of automated source
code analysis and of distributed intrusion detection could
help adding additional flexibility and create more trust for
people to accept on their hardware software provided by
other people. Operating system level security containers
such as those found in ChromeOS [26] could also help
reducing the risk breaking system security.

B. Distributed architecture and distribution of services

The coordination of SlapOS servers is a research issue as
the coordination is the key point with Grids. In our context
of Desktop Grids, the BonjourGrid [3]–[5] component aims
at improving the infrastructure efficiency by breaking up
a large, monolithic application into separate components
(services). The rationale for doing this is that the large
application no longer requires an equally large, monolithic
mainframe computer to run on. BonjourGrid has been imag-
inated for answering to the following question: how to
federate all the users and machines of all the Boinc, Condor
and XtremWeb projects? (Boinc, Condor and XtremWeb are
popular Desktop Grid middleware [11]).
In the past, Desktop Grid systems represented an alternative
to super-computers and parallel machines and they offered
computing power at low cost. Indeed, Desktop Grids have
intrinsic features that explain the large number of interna-
tional projects aiming to better exploit this computational
potential. Many Desktop Grid system have been developed
using a centralized model. These infrastructures run in a
dynamic environment and the number of resources may

increases dynamically. Hence, the need for decentralization
is becoming increasingly important. BonjourGrid is a new
decentralized approach of Desktop Grid systems.
Its main objective is to provide a decentralized infras-
tructure of multi-coordinators (here multi SlapOS servers),
using the services offered by a publish/subscribe system [7].
Unlike a classical Desktop Grid, BonjourGrid can create, on
demand, a dynamic and decentralized execution environment
for each user, based on existing computing systems such as
XtremWeb, Boinc or Condor, to run any kind of applications,
without the intervention of a system administrator. Since Sla-
pOS Masters are implemented themselves as SlapOS Nodes,
in a completely reflexive ways, BonjourGrid may help to
coordinate the multiple MAster nodes in the same way it
coordinates the XtremWeb, Boinc or Condor coordinators.
The problem is even simpler because we have only one type
of system to manage (a SplaOS master).
Moreover BonjourGrid comes with a fault tolerant approach
based on passive replication and virtualization to tolerate the
crash of coordinators (SlapOS master nodes). The novelty
resided here in an integrated environment based on Bonjour
(publication- subscription mecanism) for both the coordina-
tion protocol and for the fault tolerance issues. In particular,
it is not so frequent to our knowledge to describe and to
implement a fault tolerant protocol according to the pub-sub
paradigm. Experiments, conducted on the Grid5000 testbed7,
have illustrated a comparative study between Boinc (resp.
Condor) on top of BonjourGrid and a centralized system
using Boinc (resp. Condor) and second prove the robustness
of the fault tolerant mechanism.
To summarize, the key idea of BonjourGrid is to rely
on existing Institutional Desktop Grid middleware, and to
orchestrate and coordinate multiple instances, i.e multiple
computing elements, through a publish/subscribe system.
We propose to reuse this framework for the coordination
of SlapOS masters that may appear or disappear on the fly.
Several issues must be taken into account in our future
works. The first issue, which is not really difficult, is the
reservation of participations: in the current version, Bon-
jourGrid allocates available resources for a user without
any reservation rules. Thus, if a user demands all the
available machines for a long time, BonjourGrid allocates
them to him. The second issue is going up to a wide area
network. The current version works only in a local network
infrastructure because of Bonjour, it is important to bypass
this constraint. Grafting the new package of Bonjour, Wide
Area Bonjour from Apple, may be a good solution to resolve
this problem...but it is not sufficient to capture all the issues.
For instance, the advent of Internet-Scale middleware raises
qualitatively different issues than ”global scale” alone specif-
ically those of bridging trust domains across organizational
boundaries. So, we will also need to address mecanisms for

7https://www.grid5000.fr

authentification. In this new environment, we are planning
to apply a re-engineering step for using the Extensible
Messaging and Presence Protocol (XMPP [17], [18]) which
is an open technology for real-time communication, which
powers a wide range of applications including instant mes-
saging, presence, pub-sub.... We believe that the XMPP
framework is of premier choice for the implementation of
the coordination in SlapOS but we need to measure the
architectural impact of this choice on the protocol itself.
A good example of what is possible to do with XMPP is
the Archipel8 project whose aiming at coordinating multiple
virtual machines. However, XMPP has some limitations,
among them a scalability problem in the management of
rosters (see [18] page 219). The problem could be a problem
with implementation.
Another possibility for the coordination is a solution based
on websockets / COMET / hookbox9. Hookbox offers a pub-
sub interface but it is more oriented towards ’pure HTTP’
protocol than XMPP. Consequently, programming is more
easy and we have less potential problems with firewalls.
Anyway, the BonjourGrid protocol which is:

1) The user requests for computation; He selects ma-
chines based on their performance (CPU, RAM,...);

2) The user provides the control ow graph, binaries, input
data;

3) The user deploys locally a coordinator and requests
for participants.

becomes as follows in SlapOS:
1) The user requests an instance of software release (ie.

a daemon);
2) The user provides a URL to a description of the

sofware release which itseld provides a description of
how to create software instances;

3) The user provides configuration parameters to crate an
instance of software release.

but the main challenge remains: how to coordinate SLapOS
masters between multiple distinct companies and based on
contractual relationships but not based on technical relation-
ships (CPU, RAM,...)?

VII. CONCLUSION AND OUTLOOK

SlapOS demonstrates that the borders between IaaS, PaaS
and SaaS in Cloud Computing are no longer relevant.
Through a single API and a single method inspired by 10
years of experience in grid computing, SlapOS is capable
of allocating virtual machines, application servers, databases
and even ERP applications.
SlapOS also demonstrates that server farms and data cen-
ters are no longer required to provide high quality Cloud
Computing. SlapOS servers hosted at home on optical
fiber and IPv6 networks are capable of providing reliable

8http://http://archipelproject.org/
9http://hookbox.org/

Cloud service thanks to application level data redundancy.
Moreover, SlapOS contributes to energy savings by reusing
heat dissipation of servers for households heating and by
removing the need for air cooling in many countries.
SlapOS is already in commercial production. It is used
by companies or by people who are looking for a Cloud
Computing solution which protects their strategic data at
a low operating cost. It is used in particular by software
publishers who are urged to transform their applications into
SaaS.
Yet, SlapOS needs many improvements. The Resilience
project, a project sponsored by more than 10 organisations
including Morpho, Nexedi, Nuxeo, Wallix, Université de
Paris 13, Institut Télécom will improve SlapOS into two
directions: by removing and making SlapOS Master dis-
tributed and by adding to SlapOS extensive support for
security.
SlapOS also nees more contributors. We are calling here all
research, educational organization to join the SlapOS com-
munity and start building recipes for open source software so
that it can be deployed on SlapOS. This effort is important
for scientific reasons: by creating a rich library of open
source applications hosted on the Cloud using open source
SlapOS, research and education can keep access to the
know how of Cloud Computing which is for now migrating
increasingly to companies such as Google, Facebook and
Microsoft, and remains secret. SlapOS is our proposed
testbed to make sure that Distributed Cloud Computing
knowledge remains shared and open.

REFERENCES

[1] Lesyng, B., Bala, P., Erwin, D.: Eurogrid: European compu-
tational grid testbed. J. Parallel Distrib. Comput. 63 (2003)
590–596

[2] Liang-Jie Zhang EIC Editorial: Introduction to the Body of
Knowledge Areas of Services Computing IEEE Transactions
on Services Computing Vol 1, number 2, April-June 2008

[3] Heithem Abbes, Christophe Cérin, and Mohamed Jemni.
Bonjourgrid as a decentralised job scheduler. In APSCC 08.
Proceedings of the 2008 IEEE Asia-Pacific Services Com-
puting Conference, pages 89–94,Washington, DC, USA,
2008. IEEE Computer Society.

[4] Heithem Abbes, Christophe Cérin, and Mohamed Jemni.
Bonjourgrid : Orchestration of multi-instances of grid mid-
dlewares on institutional desktop grids. In 3rd Workshop on
Desktop Grids and Volunteer Computing Systems (PCGrid
2009), en conjonction avec IPDPS 2009, Rome, Italie, 29
Mai 2009.

[5] Heithem Abbes, Christophe Cérin, Mohamed Jemni: A
decentralized and fault-tolerant Desktop Grid system for
distributed applications. Concurrency and Computation:
Practice and Experience 22(3): 261-277 (2010)

[6] Douglas Thain, Todd Tannenbaum, and Miron Livny. Con-
dor and the grid. In Fran Berman, Geoffrey Fox, and
Tony Hey, editors, Grid Computing : Making the Global
Infrastructure a Reality. John Wiley et Sons Inc., December
2002.

[7] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui,
and Anne-Marie Kermarrec. The many faces of pub-
lish/subscribe. ACM Comput. Surv., 35(2) :114131, 2003.

[8] Roberto Di Cosmo, Stefano Zacchiroli: Feature Diagrams
as Package Dependencies. Software Product Lines: Going
Beyond 14th International Conference, SPLC 2010, Jeju
Island, South Korea, September 13-17, 2010. Proceedings:
476-480

[9] Pietro Abate, Roberto Di Cosmo, Jaap Boender, Stefano
Zacchiroli: Strong dependencies between software compo-
nents. Proceedings of the Third International Symposium on
Empirical Software Engineering and Measurement, ESEM
2009, October 15-16, 2009, Lake Buena Vista, Florida,
USA: 89-99

[10] Ian Foster (Editor), Carl Kesselman (Editor) The Grid:
Blueprint for a New Computing Infrastructure (The Elsevier
Series in Grid Computing) Morgan Kaufmann, 1999

[11] Christophe Cerin (Editor), Gilles Fedak (Editor) Desktop
Grid Computing Chapman & Hall, Fall 2011

[12] Smets-Solanes, J.-P., Atem de Carvalho, R. ERP5: a next-
generation, open-source ERP architecture IT Professional,
July-Aug. 2003, Volume: 5 Issue:4, page(s): 38 - 44

[13] Teragrid. URL: https://www.teragrid.org/

[14] Grid5000. URL: https://www.grid5000.fr/mediawiki/index.
php/Grid5000:Home

[15] Boinc. URL: http://boinc.berkeley.edu/

[16] XtremWeb. URL : http ://www.xtremweb.org.

[17] XMPP. URL: http://xmpp.org/

[18] Xmpp, the definitive guide. Peter St Andre, Kevin Smith
and Remko Trono̧n O’Reilly, 2009.

[19] Memcached: a free and open source, high-performance,
distributed memory object caching system.
http://memcached.org/

[20] Buildout - software build system reloaded
http://www.buildout.org/

[21] Supervisor: A Process Control System
http://supervisord.org/

[22] Tiosafe
http://www.systematic-paris-region.org/en/projets/tiosafe

[23] Python Eggs http://www.python-eggs.org/

[24] Ruby Gems
http://rubygems.org/

[25] Xtreemos http://www.xtreemos.eu/

[26] ChromeOS – http://www.chromium.org/

